ระบบทำความเย็นโดยใช้ CO₂ เป็นสารทำความเย็น

CO₂ Refrigerant in Refrigeration System

บทน่า

Carbon dioxide (CO₂) หรือ R744 ถูกใช้เป็นสารทำความเย็นมานานแล้ว จดสิทธิบัตรครั้งแรก (British Patent) โดย Alexander Twinning ในปี ค.ศ. 1850 Thaddeus S.C. Lowe ออกแบบเครื่องทำความน่า แข็งโดยใช้ CO₂ ในปี ค.ศ. 1867 เนื่องจากข้อดีของ CO₂ ที่จัดเป็นสารทำความเย็นแบบปลอดภัย คือ ไม่เป็นพิษและไม่ติดไฟ จึงทำให้ระบบทำความเย็นโดยใช้ CO₂ ถูกพัฒนามาเรื่อยมา โดยมีความนิยมใช้กันมากในช่วงปี ค.ศ. 1920 ถึงช่วงต้นปี ค.ศ. 1930 ในอุตสาหกรรมการคัดแยก ส่วนแอมโมเนีย (NH₃ หรือ R717) ยังนิยมใช้ในอุตสาหกรรมการทำความเย็นทั่วไป จนกระทั่งมีการปรากฏตัวของ CFC ในปี ค.ศ. 1928 จึงทำให้ CO₂ ค่อยๆ ลดความนิยมลงไปและหายออกจากตลาดในปี ค.ศ. 1960 แต่คุณลักษณะที่ทำให้ CO₂ หายออกจากตลาดเนื่องจาก CO₂ มีระดับความดันในระบบสูงมากเนื่องจากปริมาณที่เทียบกับ CFC ในช่วงปี ค.ศ. 1990 CO₂ เตรียมกลับมาใช้อีกครั้งหนึ่งเนื่องจากผลกระทบทางด้านสิ่งแวดล้อมของโลกอน เนื่องมาจากจากการร่างของ CFC และ HCFC แล้วทำให้ชื้นโฮโลในบรรยากาศโลกทำลาย และทำให้โลกร้อนขึ้น ประกอบกับข้อจำกัดของปริมาณการจำยอมเนื่องในระบบทำความเย็น ขนาดใหญ่

CO₂ ถูกจัดเป็น Natural Refrigerant เหมือนกับแอมโมเนีย น้ำ และไซโอโครคาร์บอน (เช่น ไพรโพร, propane) และบิวเทน (butane) เป็นต้น) แต่สารทำความเย็นเหล่านี้สิ้นสุดแล้วมีข้อดีบางอย่าง เช่น แอมโมเนียมีความเป็นพิษ น้ำมีข้อจำกัดเนื่องมาจากจุดเยือกแข็งของน้ำที่ 0°C และมีค่า volumetric refrigeration capacity ต่ำ ส่วนไซโอโครคาร์บอนจุดติดไฟได้หรือระเบิดได้

CO₂ มีคุณสมบัติต่างจากสารทำความเย็นที่ใช้กันอยู่ทั่วไป (เช่น HCFC-22, HFC-134a, HFC-404A เป็นต้น) หลายอย่างเช่น CO₂ มีระดับความดันในระบบสูงกว่า มีช่วงอุณหภูมิทำงานที่แคบกว่า มีความดันที่ Triple point ที่สูงกว่ามากและมีอุณหภูมิที่ Critical point ที่ต่ำกว่ามาก
คุณสมบัติของ CO₂

CO₂ มีความคืบหน้าที่ Triple point ที่สูงมากคือ 5.2 bar ซึ่งสูงกว่าความคืบหน้าทางการณ์อื่นๆ อาจทำให้เกิดปัญหาได้ แต่ไม่ได้เตรียมอุปกรณ์ทางค้นคว้าเพื่อกำกับใช้ก่อน และมีอุณหภูมิที่ Critical point ที่ความคืบหน้า 31.1°C ซึ่งจะส่งผลกระทบต่อรูปของการออกแบบระบบทำความเย็น ดังแสดงในรูปที่ 1

รูปที่ 1 แผนภูมิแสดงความคืบหน้าและอุณหภูมิระหว่าง CO₂ แบบฉีด (R717) และ R134a; ที่มา Danfoss[1]

| คุณสมบัติของ CO₂ (phase) | ได้ทั้ง 3 สถานะ คือ ของแข็ง (solid), ของเหลว (liquid) และไอ (vapour) ดังแสดงในรูปที่ 2 ซึ่งจะเห็นได้ว่า CO₂ สามารถมีสถานะเป็นของแข็ง 2 สถานะในสภาพแวดล้อมได้ คือ ระหว่างของแข็งกับไอ, ของเหลวกับไอ และของแข็งกับของเหลว

| CO₂ properties compared with various refrigerants |
|------------------|--------|--------|--------|--------|
| Refrigerant | CO₂ | R134a | R404A | NH₃ |
| Flammable or explosive | NO | NO | NO | (YES) |
| Toxic | NO | NO | YES | |
| Natural substance| YES | NO | YES | NO |
| Ozone Depletion | 0 | 0 | 0 | 0 |
| Potential (ODP) | 0 | 0 | 0 | 0 |
| Global Warming | 0 | 0 | 0 | 0 |
| Potential (GWP) | 0 | 0 | 0 | 0 |
| Critical point | bar | 73.6 | 40.7 | 37.3 | 113 |
| °C | 31.1 | 101.2 | 72 | 132.4 |
| Triple point | bar | 5.2 | 0.004 | 0.028 | 0.06 |
| °C | -56.6 | -103.3 | -100 | -77.7 |

ตารางที่ 1 ประมวลผลการติดต่อสัมพันธ์ระหว่าง CO₂ ทั้ง R134a, R404A และแบบฉีด; ที่มา Guntner[3]

รูปที่ 2 CO₂ Phase Diagram; ที่มา Danfoss[1]

ที่ความคืบหน้าบรรยากาศ CO₂ สามารถมีสถานะได้ 2 อย่าง คือ ของแข็งและไอ ไม่สามารถมีสถานะเป็นของเหลวได้ ที่อุณหภูมิแค่กว่า -78.4°C CO₂ จะมีสถานะเป็นของแข็ง ซึ่งเรียกว่า “น้ำแข็งแห้ง (dry ice)” ที่อุณหภูมิสูงกว่านี้ CO₂ จะเปลี่ยนสถานะจากของแข็งเป็นไอ ซึ่งเรียกว่า การระเหิด

ที่ความคืบหน้า 5.2 bar และอุณหภูมิ -56.6°C CO₂ จะอยู่ในสถานะพิเศษเรียกว่า Triple point ซึ่งก็คือมีสถานะทั้ง 3 สถานะ (ของแข็ง, ของเหลว และไอ) อยู่ในสภาพสมดุล

จากรูปที่ 3 จะเห็นได้ว่าที่จุด critical point คือ อุณหภูมิ +31.1°C และความคืบหน้านี้ 73.6 bar CO₂ จะมี
การใช้ CO₂ เป็นสารทำความเย็น

CO₂ สามารถถูกใช้เป็นสารทำความเย็นได้ทั้งในช่วง subcritical และ supercritical ระบบทำความเย็นโดยทั่วไปจะใช้ในช่วง subcritical ดังแสดงในรูปที่ 5 ซึ่งคือ วงจรของระบบทำความเย็นจะอยู่ที่ช่วง subcritical และอยู่ต่ำกว่า critical point ในระบบทำความเย็นแบบ single stage จะต้องพิจารณาวิธีการ์จำกัดทางด้านอุณหภูมิของคอนเดนเซอร์และค่าดีมหายในระบบที่มีค่าสูงมาก

รูปที่ 3 แสดงความหนาแน่น (density) ของ CO₂ ในสถานะของเหลวและไอที่สูญวิธีที่ต่างๆ ที่มา: Danfoss [1]

รูปที่ 4 Log p-h diagram of CO₂ ที่มา: Danfoss [1]

รูปที่ 5 Subcritical and Transcritical CO₂ Refrigeration Circuit; ที่มา: Danfoss [1]

ระบบทำความเย็นแบบ Transcritical คือวงจรของระบบทำความเย็นจะอยู่ในช่วง subcritical (evaporation) และ supercritical (gas cooling) ดังแสดงในรูปที่ 5 มักจะใช้ในระบบทำความเย็นขนาดเล็ก, ระบบปรับอากาศรถยนต์, heat pump
ชนิดเสียกและระบบทำความเย็นในชุดปั๊มกระ้กัด
แต่ไม่อยู่ได้ใช้ในระบบทำความเย็นอยู่ตามกรุ๊ม

CO₂-NH₃ Cascade System

ระบบทำความเย็นโดยใช้ CO₂ เป็นสารทำความเย็นส่วนมากจะใช้เป็นแบบ cascade system เพื่อที่จะได้ควบคุมความคานภายในระบบไม่ให้สูงมากเกินไป ทำให้สามารถเลือกใช้อุปกรณ์การทำความเย็นได้เหมือนกับระบบทำความเย็นโดยปกติตั้งไป เช่น คอมเพรสเซอร์ ฮูพกรณ์ควบคุม
และว่าผล เป็นต้น

ระบบ cascade CO₂ ส่วนมากจะใช้คู่กับแอร์เนีย ในกรณีนี้จะจ่ายของ CO₂ จะสามารถทำงานได้หลายแบบ เช่น direct expansion system (DX), pump recirculation system และ brine system

รูปที่ 6 แสดงระบบที่ทำความเย็นอุณหภูมิ
ต่ำโดยใช้ CO₂ cascade กับแอร์เนีย โดยที่รวม CO₂ เป็นแบบ pump recirculation system โดย CO₂ จะถูกปั๊มออกจาก CO₂-receiver เข้าถึงไปเป็นต้าโดย CO₂ บางส่วนจะระเหยหลังจากเข้าสู่ CO₂-receiver แล้ว CO₂ จะถูกส่งเข้าสู่คอมเพรสเซอร์และไปควบคุมภายใน CO₂-NH₃ heat exchanger โดย heat exchanger นี้จะทำหน้าที่เป็นคอนเดนเซอร์ของระบบ CO₂ และเป็นอีกไปเป็นต้าของระบบแอร์เนีย ซึ่งระบบที่นี้จะใช้ปริมาณแอร์เนียภายในระบบประมาณ 10% เมื่อเปรียบเทียบกับระบบทำความเย็นแบบปกติที่ใช้แอร์เนียเพียงอย่างเดียวเท่านั้น

CO₂-NH₃ Brine System

รูปที่ 7 แสดงระบบที่ทำความเย็นอุณหภูมิต่ำ -40°C โดยใช้ CO₂ เป็นสารทำความเย็นทุ่ติดดี (secondary-fluid mode) หรือเรียกว่า brine system โดย CO₂ จะถูกปั๊มจาก CO₂-receiver เข้าถึงไปเป็นต้าโดย CO₂ บางส่วนจะระเหยหลังจากเข้าสู่ CO₂-receiver ระบบนี้จะไม่ต้องใช้ CO₂ compressor โดยใช้อีมดั้งจาก CO₂-receiver จะไหลเข้าสู่ CO₂-NH₃ heat exchanger แล้วควบคุมไหลกลับเข้าสู่ CO₂-receiver โดย heat exchanger นี้ ทำหน้าที่เป็นอีกไปเป็นต้าของระบบแอร์เนีย
ความต้านทานในระบบ CO₂ เมื่อเครื่องหยุดทำงาน

สิ่งสำคัญที่ต้องพิจารณาในการเรื่องของความดันภายในระบบ CO₂ คือดังต่อไปนี้:

1. ความดันภายในระบบในระหว่างที่เครื่องทำงาน ซึ่งขึ้นอยู่กับลักษณะของระบบ (เช่น Single-Stage System, Cascade System, Brine System) และการขั้นต่ำๆ ลงๆ ของการทำงานที่ความเย็น

2. ความต้านทานในระบบในระหว่างที่เครื่องหยุดทำงาน เนื่องจากความร้อนจากภายในเครื่องทำนายสูงกว่าที่น้ำเย็นมากภายในระบบทำให้ระบบมีอุณหภูมิสูงขึ้น ถ้าระบบมีอุณหภูมิ 0°C ความต้านทานภายในระบบจะเท่ากับ 34.9 bar และถ้าอุณหภูมิ +20°C ความต้านทานในระบบจะสูงขึ้นถึง 57.2 bar ถ้าต้องออกแบบระบบเพื่อให้สามารถรับแรงดันได้สูงมากถึงขั้นที่จะมีอุณหภูมิสูงมาก ดังนั้นจึงใช้วิธีจัดการความดันสูงสุดภายในระบบแท่น เช่น

- ติดตั้งระบบทำความเย็นขนาดเล็กแยกต่างหาก เพื่อรักษาอุณหภูมิของ liquid CO₂-receiver ไม่ให้สูงกว่าความดันปกติ หรือจำากัดความดันให้อยู่ภายใต้ค่าที่ยอมรับได้เช่น 30 bar เป็นต้น

- ถ้าเป็นระบบขนาดเล็ก อาจจะปลอดภัยออกไปได้ โดยติดตั้ง Safety Valve ความต้านทาน

ระบบทำความเย็นอุณหภูมิต่ำมักจะต้องมีการละลายน้ำแข็ง (defrost) เช่น ใช้น้ำเย็น ใช้ไฟฟ้า หรือใช้ hot gas เป็นต้น ซึ่งถ้าใช้ hot gas จะมีประสิทธิภาพสูงสุด แต่ก็ทำให้ความต้านทานในระบบสูงขึ้นมากที่สุด ถ้าความต้านออกแบบมีค่าเท่ากับ 50 barg อุณหภูมิในการ defrost สูงสุดที่เป็นไปได้จะมีค่าประมาณ +9°C

เนื่องจากความต้านที่อุณหภูมิต่ำ +9°C มีค่าประมาณ 43 barg รวมกับ 10% สำหรับ safety valve และ 5% สำหรับกรณีที่มี load ซึ่งสูงสุด ก็จะได้ค่า Maximum Allowance Working Pressure ประมาณ 50 barg

ความปลอดภัย

CO₂ เป็นสารที่ไม่มีกลิ่น ไม่มีเสีย จัดเป็นสารทำความเย็นที่ไม่ติดไฟและไม่เป็นพิษ (Safety Group A1) ดังนั้นคือ ไม่ต้องห่วงเรื่องความเป็นรังสีแก้ CO₂ ไม่มีผลทำให้ไม่สามารถรับรู้ได้ด้วยการใช้เมขลาการร่าง (ถ้าเป็นแอลกอฮอล์ที่ร่างจะมีกลิ่น) และ CO₂ ทนกว่าอากาศ ดังนั้นเมื่อมีการร่างออกมา CO₂ จะถูกละลายอยู่ที่พื้น ซึ่งจะ
เป็นอันตรายในกรณีที่อยู่ในห้องปิดไม่มีอากาศท้าย โดย CO₂ จะไปแทนที่อากาศหายหายไป ไม่ออก (ที่อุณหภูมิ 0°C CO₂ มีความหนาแน่นมากกว่าอากาศ 1.5 เท่า) ดังนั้นจึงควรมีระบบตรวจสอบการรั่วของ CO₂ และ/หรือ ระบบกระจายอากาศถูกต้อง

CO₂ ได้ประสิทธิภาพดีกว่า

ในระบบ CO₂-NH₃ Cascade จำเป็นจะต้องมี Cascade heat exchanger และจะต้องมีการสูญเสียประสิทธิภาพณความต่างของอุณหภูมิระหว่างสารทำความเย็นทั้งสองชนิด แต่ประสิทธิภาพของ CO₂ compressor และการกำลังของความร้อนของ CO₂ ที่ติดกัน จึงทำให้ระบบ CO₂ cascade มีประสิทธิภาพโดยรวมก็ว่าระบบทำความเย็นที่ใช้กันอยู่ทั่วไป ดังแสดงในรูปที่ 8

การรันซิมบีย CO₂-NH₃ Cascade System

ความตั้งของ CO₂ ภายใน Cascade heat exchanger จะสูงกว่าความตั้งของแอร์เนื้อ ดังนั้นเมื่อเกิดการรั่วซึ่งพึงเกิดภายในระบบแอร์เนื้อ ทำให้เกิดแอร์เนื้อเยียวยแคระผ่านสามารถถูกต้องทำให้ Heat exchanger เสียหายได้

น้ำมันเหลื่อมในระบบทำความเย็น CO₂

สามารถใช้ได้ทั้งน้ำมันเหลื่อมในที่สามารถผสม (Miscible) และไม่ผสม (Non-miscible) กับ CO₂ ดังนี้

1. น้ำมัน PAO (Polyalphaolefin oil) ไม่ผสมกับ CO₂ โดยความหนาแน่นของน้ำมัน PAO จะน้อยกว่า Liquid CO₂ ดังนั้นน้ำมัน PAO จะลอยอยู่บน Liquid CO₂ ทำให้เป็นการยกในอากาศทำให้น้ำมันออกจากระบบ (ซึ่งไม่เหมือนกับระบบแอร์เนื้อที่น้ำมันจะหนักกว่าน้ำมันน้อย ทำให้น้ำมันออกจากระบบได้ง่ายกว่า) ดังนั้น ถ้าน้ำมันเหลื่อมในอิ่มไปแล้วควรจะทำให้เป็นประสิทธิการกำลังความร้อนลดลง เพื่อป้องกันปัญหาorchระบบทำความเย็น CO₂ ที่เลือกใช้น้ำมัน PAO จะต้องมี Oil separator ที่คอยพลิกเข้าที่มีประสิทธิภาพสูงมาก

2. น้ำมัน POE (Polyol ester oil) สามารถผสมกับ CO₂ ได้ ดังนั้นระบบการจัดการน้ำมันจึงง่ายกว่า แต่การใช้น้ำมัน POE นั้นต้องที่ระลึกให้เลือกน้ำมัน POE สามารถควบคุมความชื้นได้อย่างรวดเร็ว และจะเปลี่ยนสถานะกลายเป็นบริษัทสามารถถูกต้องระบบได้ ดังนั้น ขั้นตอนการแยกคั่นระบบ (evacuation) จะต้อง

รูปที่ 8 แสดงการเปลี่ยนแปลง COP ของระบบทำความเย็นแบบต่าง ๆ; ที่มา Danfoss[1]
ครอบประสงค์ CO₂ มักเกิดเล็กกว่า

เปรียบเทียบถึงขนาดการทำความเย็นเท่ากันและเชื่อมโยงการทำ้งเดียวกัน ขนาดคอม-
เปอร์ชั่นสำหรับระบบ CO₂ จะมีขนาดเล็กกว่าระบบแอมโมเนียประมาณ 8 เท่า และเล็กกว่าระบบ R404A ประมาณ 6 เท่า

สัมประสิทธิ์การทำความเย็นของ CO₂ สูงกว่า

เปรียบเทียบถึงเส้นช่วงการทำ้งเดียวกัน
(ขนาดท่อเท่ากัน, การจัดเรียงท่อเหมือนกัน, ความเร็วลมเท่ากัน, condensation temperature เดียวกัน เป็นต้น) ระบบ CO₂ จะมี
สัมประสิทธิ์การทำความเย็นสูงกว่าระบบแอมโมเนียและระบบ HFC ทั้งแบบ DX และ
Pump recirculation

โดยระบบทำ CO₂ เล็กกว่า

เนื่องจากความหนาแน่นของ CO₂ ใน
สถานที่มีความก้ากว่าอิระติทำความเย็นอื่นๆ (เช่น แอมโมเนีย, R134a เป็นต้น) ทำให้ทำด้าน Dry
suction และ Wet Return สำหรับระบบ CO₂ มี
ขนาดเล็กกว่าระบบอื่นๆมาก ส่วนท่อ Liquid สำหรับ
ระบบ CO₂ จะมีขนาดใหญกว่าระบบแอมโมเนีย
และใกล้เคียงกับระบบ R134a

แต่เมื่อพิจารณาถึงระบบทำด้านแอมโมเนีย
ระบบ CO₂ จะใช้ทำด้านกว่าระบบแอมโมเนีย
ประมาณ 2.5 เท่า และน้อยกว่าระบบ R134a
ประมาณ 7 เท่า

การตัดทิ้ง safety valve ในระบบทำความเย็น CO₂
ไอที่ 35 bar หรือน้อยกว่า เมื่อระบบ CO₂ สู่บรรยากาศ (ความตันต่ำกว่า Triple point line) จะเป็นไอเพียงอย่างเดียว

ถ้าตั้งความตันของ relief valve ในสถานะไว้ที่ 50 bar เมื่อระบบ CO₂ สู่บรรยากาศแล้ว จะเกิด solid ประมาณ 5% ในกรณีนี้ถ้าทางออกของ relief valve ต่อเข้ากับท่อที่คัดเคลื่อนไปมายังจะทำให้เกิดการอุดตันภายในท่อได้ วิธีแก้ปัญหา
นี้อาจจะปั่นลายนอกสู่สู่บรรยากาศโดยตรงโดยที่ไม่ต้องติดตั้งท่อที่ทางออกของ relief valve

สูตร

CO₂ เป็นสารทำความเย็นที่เหมาะสมสำหรับระบบทำความเย็นอุตสาหกรรมอุณหภูมิต่ำ แต่ไม่สามารถนำไปแทนระบบแอร์ได้อย่างสมบูรณ์ ส่วนมากแล้วจะใช้เป็นแบบ cascade system โดยใช้แอร์เนื้อเป็นสารทำความเย็นด้านวางจะอุณหภูมิสูง

อุปกรณ์ที่ใช้สำหรับระบบทำความเย็น CO₂ จะต้องรับแรงดันได้สูงอย่างน้อย 40 bar ซึ่งบ้างยังมีคุณสมบัติอุปกรณ์ต่างๆ เหล่านั้นส่วนติดตั้งอุปกรณ์ส่งระบบ CO₂ ที่สามารถทนแรงดันสูงได้แล้ว

การทราบถึงคุณสมบัติของ CO₂ ว่าแตกต่างจากสารทำความเย็นชนิดอื่นอย่างไร จะช่วยให้สามารถออกแบบ ติดตั้ง และเดินเครื่องได้อย่างมีประสิทธิภาพและปลอดภัย

เอกสารอ้างอิง

1. Danfoss; CO₂-presentation; PART I and Part II
2. Danfoss; CO₂ refrigerant for industrial refrigeration (article)
3. Guntner; heat Xchanger special; special publication; ISSUE 10/2004

รูปที่ 9 CO₂ expansion-phase changes safety valves:
ที่มา Danfoss(1)

ถ้าตั้งความตันของ relief valve ในสถานะของเหลวที่ 20 bar เมื่อระบบ CO₂ ออกจากสู่บรรยากาศแล้วจะเกิด solid ประมาณ 78% ในกรณีนี้จะเป็นปัญหามาก อาจทำให้เกิดการอุดตันภายในท่อที่ต่อเข้ากับทางออกของ relief valve ได้ อาจป้องกันได้โดยการต่อ safety valve เข้ากับจุดใดในระบบที่มีความตันสูงกว่า 5.2 bar